YOLOv8框架自带模型体验页面全解析
笔记哥 /
04-18 /
33点赞 /
0评论 /
783阅读
# 简介
YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务。
YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。在图像检测识别领域yolov8和yolov5是使用较多的两款框架,兼顾精度和速度。
本文讲解yolov8自带的一个实时目标检测页面的使用。页面如下,可以在页面上体验yolov8上所有的模型,包括目标检测、分类、分割、姿态、定向框。

# 安装
1. 创建虚拟环境
conda create --name yolov8 python=3.10 -y
conda activate yolov8
1. 安装pytorch
conda install pytorch2.2.0 torchvision0.17.0 torchaudio==2.2.0 pytorch-cuda=12.1 -c pytorch -c nvidia
由于numpy版本会导致报错,需要降低numpy版本
conda install numpy==1.26.2
1. 下载工程
git clone --branch v8.2.103 
使用 --branch v8.2.103 选择yolov8版本
1. 安装工程
pip install -e . -i 
1. 测试推理
yolo predict model=yolov8n.pt source='ultralytics/assets/zidane.jpg' device=0
```csharp
yolo predict model=yolov8n.pt source='ultralytics/assets/zidane.jpg' device=0
Ultralytics YOLOv8.2.103 🚀 Python-3.10.16 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 2080 Ti, 11004MiB)
YOLOv8n summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
image 1/1 /nfs/user_home/lijinkui/projects/ultralytics/ultralytics/assets/zidane.jpg: 384x640 2 persons, 1 tie, 86.8ms
Speed: 7.0ms preprocess, 86.8ms inference, 209.4ms postprocess per image at shape (1, 3, 384, 640)
Results saved to runs/detect/predict
💡 Learn more at
```
推理结果在:Results saved to runs/detect/predict

到此为止就说明yolov8安装没有问题了。
# 训练
使用官方数据测试训练:
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=10 imgsz=640
# 页面展示
yolov8自带一个推理的前端页面,下面说明开启的步骤。
首先使用 yolo help 这个命令查看yolo的帮助信息
```csharp
(yolov8) lijinkui@node07:~/$ yolo help
Arguments received: ['yolo', 'help']. Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of {'segment', 'detect', 'classify', 'pose', 'obb'}
MODE (required) is one of {'predict', 'val', 'train', 'export', 'track', 'benchmark'}
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
5. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
yolo explorer data=data.yaml model=yolov8n.pt
6. Streamlit real-time webcam inference GUI
yolo streamlit-predict
7. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs:
Community:
GitHub:
```
可以看到yolo出来训练,推理等任务之后还有两个功能,分别是5和6。其中6就是一个可以在前端推理的功能。
启动推理功能,这里需要魔法,从github下载推理模型。或者下载好放在跟目录下也行
```csharp
yolo streamlit-predict
```

打开浏览器页面

参数包括:
- Video: 选择推理源摄像头或视频
- Model: 选择模型,yolov8的所有模型都能选择,包括检测、分类、分割、姿态、角度,甚至yolo-word
- Classes: 选择推理的类别
- 下面还有置信度控制。
点击Start就可以看到推理结果了。
# 演示视频
检测:

分割:

姿态:

角度:

本文来自投稿,不代表本站立场,如若转载,请注明出处:http//www.knowhub.vip/share/2/2381
- 热门的技术博文分享
- 1 . ESP实现Web服务器
- 2 . 从零到一:打造高效的金仓社区 API 集成到 MCP 服务方案
- 3 . 使用C#构建一个同时问多个LLM并总结的小工具
- 4 . .NET 原生驾驭 AI 新基建实战系列Milvus ── 大规模 AI 应用的向量数据库首选
- 5 . 在Avalonia/C#中使用依赖注入过程记录
- 6 . [设计模式/Java] 设计模式之工厂方法模式
- 7 . 5. RabbitMQ 消息队列中 Exchanges(交换机) 的详细说明
- 8 . SQL 中的各种连接 JOIN 的区别总结!
- 9 . JavaScript 中防抖和节流的多种实现方式及应用场景
- 10 . SaltStack 远程命令执行中文乱码问题
- 11 . 推荐10个 DeepSeek 神级提示词,建议搜藏起来使用
- 12 . C#基础:枚举、数组、类型、函数等解析
- 13 . VMware平台的Ubuntu部署完全分布式Hadoop环境
- 14 . C# 多项目打包时如何将项目引用转为包依赖
- 15 . Chrome 135 版本开发者工具(DevTools)更新内容
- 16 . 从零创建npm依赖,只需执行一条命令
- 17 . 关于 Newtonsoft.Json 和 System.Text.Json 混用导致的的序列化不识别的问题
- 18 . 大模型微调实战之训练数据集准备的艺术与科学
- 19 . Windows快速安装MongoDB之Mongo实战
- 20 . 探索 C# 14 新功能:实用特性为编程带来便利
- 相关联分享
- YOLOv8框架自带模型体验页面全解析